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well tested experimentally on mixtures of the 
simple electrolytic ions to permit its application, 
with confidence, to the quantitative interpretation 
of the relatively, complex protein patterns. 
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Summary 
If disturbances due to convection and gravity 

are avoided, an initially sharp boundary between 
two solutions containing n species of ions will split, 
on passage of an electric current, into not more 
than « — 1 separate boundaries, each of which 
moves at a different rate. In this research ions 
differing by only a few per cent, in mobility and 
systems containing as many as six species have 
been studied with the aid of the new procedures 
in which the refractive index gradients in the 
boundaries are photographed with the schlieren 
scanning camera during substantially convec-

In an accompanying paper by Longsworth3 it 
is shown experimentally that the passage of an 
electric current across an initially sharp junction 
between two electrolyte solutions may cause new 
concentration gradients to form and to move 
away from the original gradients. From a single 
original boundary there will thus be formed a 
system of boundaries. The motion of these 
boundaries and the composition of the solutions 
between them may be predicted from the theory 
to be outlined below, for strong electrolytes, if 
the disturbing effects of thermal and gravitational 
convections are avoided. An example of such a 
system is given schematically in Fig. 1. This 
system, taken from Fig. 1 of the accompanying 
paper,8 involves a total of six different ion species 
and has one less than that number of boundaries, 
as will be found to be generally true. Of the five 
boundaries, one is stationary, indicated by the 
double bars, and four move, two toward the anode 
and two toward the cathode, as would be ex­
pected from the presence of three anions and three 
cations. The fact that some of the six ions are 
missing in the different phases, a . . . f, is not of 
general significance since a similar system would 
be developed with all ions present in each phase 

(1) The Bureau of Medicine and Surgery does not necessarily 
undertake to endorse views or opinions which are expressed in this 
paper. 

(2) Lieutenant Commander Medical Corps, United States Naval 
Reserve. 

(3) Longsworth, T H I S JOURNAL, 67, 1109 (1945). 

tion-free electrolysis at 0° in the Tiselius cell. 
The fundamental moving boundary equation, 

ATj/ AQ = V, in which V is the displacement of 
the boundary across which the differences of 
transference number and concentration of the jth 
ion are ATj and AQ, respectively, has been 
shown to be valid for all cases in which accurate 
transference data were available. The more com­
plex boundary patterns have been interpreted, 
using the theory of Vincent P. Dole given in the 
following paper, with the aid of the assumption 
that relative ion mobilities are independent of the 
concentration. Within the limits of error imposed 
by this approximation it has been shown, for all 
cases studied, that a boundary can remain sta­
tionary on passage of the current only if all con­
stituents are in the same relative proportions on 
either side. At a moying boundary, on the other 
hand, no two species can exist in the same pro­
portion on the two sides unless their mobilities 
are identical. 
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if the two original solutions, a and f, both con­
tained all the ion species. 
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Fig. 1.—Schematic representation of a particular six ion 

system. 

A complete description of such a system— 
boundary velocities and concentration distribu­
tions—could, in principle, be obtained from the 
compositions of the original solutions with the 
differential equations of continuity, the electro-
neutrality requirement and a specification of ion 
mobilities as functions of composition. This ap­
proach to the problem, however, would fail to 
yield practically useful, general results, because 
of mathematical complexity and lack of data for 
specification of the mobilities. 

Since the mathematical difficulties arise chiefly 
in the description of concentration distributions 
through the boundaries, a simplification is ob­
tained if the continuity equations are developed 
in a form independent of the particular path by 
which an ion concentration changes between 
phases. This device eliminates the complica-
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tions due to diffusion, since t ha t process cannot 
affect the homogeneous phases, and has been used 
in most of the earlier developments of the theory 
of moving boundaries.4 '5 

Fortunately for the present analysis, it is suffi­
cient to specify mobilities as relative mobilities. 
To the extent, therefore, t ha t mobilities are varied 
by the same proportional factor with change in 
composition the variation does not enter the 
analysis. Later in this paper the assumption will 
be made tha t the relative mobilities are constant. 
This assumption represents a close approximation 
for aqueous solutions of the strong electrolytes at 
the concentrations encountered in moving bound­
ary experiments, as is shown by the satisfactory 
agreement, reported in the accompanying paper,3 

between the theory and experiment. I t is to be 
anticipated tha t considerable deviations from 
theory would be found with solutions of the weak 
electrolytes, for which such an assumption would, 
in many instances, be a poor approximation. 

Definitions and Notation.—The equivalent 
volume concentration of an ion of the j species, 
Cj, the mobility, Uj, and the relative mobility, ry, 
will all be taken as signed quantities, negative 
for an anion and positive for a cation. Only ions 
with different mobilities will be considered dis­
tinct species. The positive direction in the cell 
will be taken as t ha t given by the motion of posi­
tive ions in the electric field. Both the total flux 
(current density) due to flow of all ions, i, and the 
partial flux due to flow of ions of the j species, ij, 
are positive in homogeneous solutions for which 
only the fluxes will be defined. The dimensions 
of these variables are current /area . 

+ Electric current 
Fig. 2.—-General schematic representation of a moving 

boundary system. The double line indicates the sta­
tionary boundary. 

In a one dimensional potential gradient (dE/dx) 
the following equation serves to define the mo­
bility, Uj 

dE UjCj 
dx 

U) 

From Ohm's law the potential gradient is 
given by 

dE i 
dx 

(2) 

where K is the specific conductance of the solution. 
This, in turn, is given from the fact tha t the total 
flux, i, is the sum of all partial fluxes, ij, so for n ions 

K = M1Cl + U2C2 + • • • + UxCn (3) 

(4) Kohlrausch, Ann. Physik, 62, 209 (1897). 
(5) H. Weber, "Diepartiellen Differential-Gleichungen der mathe-

matischen Physik," 5th edition, chapter 24, Braunschweig, 1910; 
von Laue, Z. anorg. Chem.. 93, 329 (1915); Henry and Brittain, Trans. 
Faraday Snc. 29, 798 (1933). Sven^nn. Arkiv Kemi, Mineral. GnA. 
17A. Nn II. I M1Ji:!! 

The transference number of the j ion species, 
Tj, may be defined and evaluated from the pre­
ceding relations 

T- = ^ = ?& = — 
' i K UiC1 + UiCt + 

v-jCj 
+ UnCn 

(4) 

Since the mobilities enter the present analysis 
only through the transference number, in which 
they appear as ratios, it is sufficient to specify 
the relative mobilities, rj, which may be obtained 
by dividing through the set of mobilities, u\ • • • Un, 
by the absolute magnitude of any one member of 
the set. I t will be convenient for subsequent 
analysis to consider the set of relative mobilities, 
n • • • r„, as ordered from the most negative to 
the most positive. In terms of relative mobilities, 
the transference number is unchanged in form 

Tj 
Ud 

TlC1 + r.C-i + TnCn 

T1Cj 
(5) 

The denominator, <r, of the last expression is seen 
to be similar in form to the specific conductance, 
K, except tha t the mobilities involved are relative 
mobilities. For this reason it will be called the 
relative conductance. 

Under the convention of signed equivalent con­
centrations the condition of electroneutrality is 
given by 

C1 + C2 + • • • + Cn = 0 (6) 

For any system of boundaries (Fig. 2), the ho­
mogeneous phases will be indicated by Greek 
letter superscripts on appropriate variables. A 
variable associated with a boundary will be identi­
fied by a pair of superscripts, obtained from the 
phases on either side. The ion species will be 
denoted by subscript numerals or lower case 
letters. 

The Moving Boundary Equation.—Consider 
two homogeneous solutions, a and /3, in a cell of 
uniform cross-sectional area (Fig. 3). In the 

Xi X X2 

Fig. 3.—The neighborhood of a boundary. The cross 
hatching symbolizes concentration gradients. 

transition region between these two phases, indi­
cated by the shaded area, the plane, 3c, is located 
a t the first moment of the concentration gradient 
of the considered ion species. Let two reference 
planes, X1, x%, s tat ionary with respect to average 
solvent molecules, be placed in the homogeneous 
solutions, one on either side of the boundary, and 
a t a sufficient distance apar t t ha t any motion of 
the boundary in a t ime interval, At, will not bring 
a plane into the boundary region. Since the trans­
ference numbers of an ion species are, in general, 
different in the solutions on either side, there will 
be for any ion species a difference between the 
fluxes through the two reference planes. During 
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(8) 

the time interval, M, the volume enclosed by the 
cell walls-and the reference planes will thus gain 
an amount, Gj(M), of the ions of the j species, 
given by 

J 'l + AI 
fo(*j) - M*i)]dt = 

a[T,W) - T1(X1)] J idt (7) 

where Xi and «g locate the reference planes along 
the cell axis, and a is the cross-sectional area of 
the cell. 

The first moment of the concentration gradient 
in the boundary has the useful property* that, 
if the ions of a given species were rearranged to 
eliminate concentration gradients between the 
two homogeneous solutions, the location of this 
ideal boundary would be at the first moment. 
The position of tlie first moment, Xj(t), for the 
ion species, j , at time, t, is given by the following 
expression, wherein the numerator is integrated 
by parts 

Jf.*^„ 
Cxi 

X2Cj(Xi, t) — XiQ(Xi, t) — I Cj(x, t)dx 
_ _ i 

Cj(X2, t) - C1(X1, t) 

On rearrangement, this becomes 

Cj(x,t)Ax - [*, - Xj(O]Cj(X2) - [X1 - Xj(O]Cj(X1) 

(9) 

The integral, multiplied by the cross-sectional 
area a, gives the quantity of ion species, j , en­
closed at time, t, by the reference planes and the 
cell walls. With the concentrations at the refer­
ence planes independent, by hypothesis, of time, 
the enclosed volume will gain an amount of the 
ion species during At 

Gj(At) = a[xj(t) - Xj(I + AO][C1-(X8) - Q(X1)] (10) 

Since the points Xi and X2 are arbitrarily located 
in the phases, a and 0, it is sufficient to label 
concentrations and transferences by a superscript 
for the phase. Equating, with this simplification 
equations 7 and 10, we obtain 

VfP (Cf - Cf) -Tf-Tf (11) 

The function, Vf0, introduced into this equation, 
is given by 

™ ri+Zi T At (12) 

i idt 
where the second form is obtained as a limit as 
At approaches zero. It will be seen that Vf'" has 
the physical significance of the boundary velocity 
per unit total flux across it, or, equivalently, of the 
volume swept out by a plane at the first moment 

((O T.onftsworth, T m S JOURNAT, , 65 , 1755 (1(14.1), 

r 
Jx 

per unit quantity of current passed. This will be 
constant for a boundary, regardless of variations 
in the current or in the cell dimensions, since the 
concentrations and transference numbers in the 
phases at either side cannot vary with time. 

Since the boundary under consideration does 
not split on passage of the current there can be no 
relative motion of the first moments of any two 
ion species. The function, Vf", has, therefore, 
the same value, V"*, for all species. Diffusion 
in the boundary, moreover, cannot shift the first 
moment of any species, since, as previously seen, 
such a shift in the moment would imply a net 
transfer of material through a reference plane in 
a homogeneous solution. Consequently, the 
moving boundary equation, which is simply a 
statement of the conservation of mass, becomes 

y«0 (Cf - Cf) -Tf-Tf (13) 
The following special forms of this relation, 
equations 14 and 15, will be used later in this 
paper. Equation 14 is obtained by the elimina­
tion of the transference numbers between equa­
tions 13 and 5, while elimination of the concen­
trations between these two relations gives equa­
tion 15, after multiplication of both sides by rj. 

{i -v"')cf- (a - ^ ) cf (I4) 
(r, - P""V) 27 = (r, - V«W) Tf (15) 

The relative mobilities, rj, ,bear no phase super­
script since they are to be assumed constant 
throughout the system. 

The Frame of Reference.—Although the total 
flux of all ions, i. e., the current density, is inde­
pendent of the reference plane, the partial flux of 
any particular species is not thus independent. 
For this reason a transference number, defined 
by the ratio of a partial to the total flux, will have 
meaning only in reference to some element which 
is considered as stationary. The transference 
numbers used in this analysis are the same as 
tuose obtained by the Hittorf method, since they 
are referred to the solvent as the fixed element. 

Since the transference number of any ion spe­
cies gives the flux per unit current density, the 
condition of continuity could be succinctly ex­
pressed by the equality of transference numbers 
referred to the boundary as the fixed element. A 
transformation can then be made to the set of 
Hittorf transference numbers by taking into ac­
count the relative motion of the boundary and the 
solvent. As was first shown by Lewis,7 such a 
transformation is effected for the j species by the 
equation 

Tj - Tj - VCj (16) 
where Tj and Tj are referred to the boundary and 
to the solvent, respectively, V is the boundary 
velocity per unit current density referred to the 
solvent, and Q is the concentration. Thus 
equality of the primed transference numbers in 

(7) Lewis , ibid., SS, 862 (1010). 
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adjacent phases implies the moving boundary 
equation 13, providing that the average solvent 
molecules in the two phases are not in motion 
relative to each other. 

Actually, there must be slight relative motion, 
as will be seen below. Since the transference 
numbers in any phase should be referred to the 
solvent in that phase, the moving boundary 
equation would properly be written, for, say, 
the 75 boundary 

Tj _ J* = q\n\y) - Cfvy\s) (17) 

where Vy>(y) and VyS(5) are, respectively, the 
displacements of the boundary with respect to 
the solvent of the y and the S phases. If displace­
ments are measured, primarily, with respect to 
the apparatus, the transference numbers in the 
phase toward the closed end must be corrected 
for any significant displacement of solvent due to 
volume changes at the electrode in the closed 
end and at all boundaries intervening between 
this electrode and the yd boundary. The trans­
ference numbers in the more distant phase require 
these -corrections plus a correction for volume 
changes around the yd boundary itself. 

The volume change around the electrode in the 
closed end of the cell is small, and may be calcu­
lated with sufficient accuracy under the assump­
tion that the partial molar volumes of the react-
ants are constant over the concentration range 
involved.7 

Volume effects about the boundaries appear to 
be of a lower order of magnitude than the errors in­
troduced by the assumption of constant relative 
ion mobilities. The first effect is due to differ­
ences in the solvent concentration in the phases. 
If a boundary region is so defined that it includes 
all boundary gradients within it, and moves 
along with the boundary in such a way as to en­
close a constant mass of solvent, then the flux of 
solvent into the region must be the same as the 
flux out. The flux, however, may be calculated 
as the product of volume concentration times 
velocity, so inequalities in the concentration of 
solvent in the adjoining phases imply reciprocal 
inequalities in velocities. Thus the solvent mole­
cules of the two phases are in relative motion. 

The second effect can occur only with bound­
aries in which the concentration distributions 
change with time, and so is absent in the steady 
state boundaries usually studied. Any volume 
change which occurs on redistribution of constitu­
ents in the boundary region of constant mass as a 
result of deviations from ideal behavior probably 
is small in systems for which the assumption of 
constant relative mobilities is an adequate ap­
proximation. Both types of volume change 
around the boundaries have been neglected in the 
present analysis. 

As will be shown later in this paper, the assump­
tion of constant relative mobilities implies that 
the boundary at the original site remains station­

ary with respect to the solvent. For systems to 
which the present analysis is applicable, therefore, 
reference to this boundary as the stationary ele­
ment implies Hittorf transference numbers with­
out the need of any volume correction. 

Dimensions of the Variables.—The transfer­
ence number, as implied by its name and by 
equation 5, is dimensionless. Therefore, from 
equation 13, products of the form 7a"C/ are also 
dimensionless. Since, by equation 12, Vafi has 
the dimensions of volume per quantity of elec­
tricity, it could simply be expressed in cu. cm./ 
coulomb, while concentration of the ions would be 
given in coulombs/cu. cm. For practical calcu­
lations it will be found to be more convenient to 
express concentration in gram equivalents/liter, 
in which case numerical factors will be avoided 
in equation 13 by expressing Vaf> in liters/96,500 
coulombs. 

Since the relative mobilities, r,-, are dimension­
less by definition, the relative conductance, a", 
has the same dimensions as are used for concen­
tration. For this reason, products of the form 
VaSaa are dimensionless, in accord with the re­
quirements of equation 15. 

General Theory.—In the following develop­
ment the relative mobilities of all species present 
in the system, and the compositions of the two 
end solutions forming the original boundary, are 
considered to be known. The data sought are 
the concentrations and transference numbers of 
the ions in all of the newly formed phases and the 
displacements, V, of the separated boundaries. 

In a preliminary survey of the problem it can be 
seen that the specification of one phase contain­
ing 11 species is not sufficient to determine the n 
concentrations of the next adjacent phase, to­
gether with the boundary displacement, V, since 
the number of conditions sought will generally 
be one more than the number given in the original 
specification. Consequently it is necessary to 
use data from both original solutions to make 
complete calculations for any boundary in the 
system. As will be seen later, for the special 
case in which one of the ions, present in the known 
phase, is absent in the unknown phase, it is pos­
sible to calculate both the composition and the 
boundary displacement, V. Even in this case, 
however, one datum has been taken from the 
original solution at the other end of the system, 
namely, the absence of some particular ion. 

The following considerations indicate that a 
system that involves a total of n ions will, in gen­
eral, have w — 1 boundaries. To specify the com­
position of a solution containing n ions, » — 1 
independent concentrations must be given, one 
having been eliminated by the electroneutrality 
condition. If it is imagined that the » — 1 given 
conditions for one original solution are applied to 
the calculation of the n variables involved in the 
first boundary (w — 1 to specify the next phase, 
and 1 to give V), it will be clear that one variable 
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is left undetermined. If this process is repeated 
through w — 1 boundaries, there will be thus ac­
cumulated n — 1 undetermined variables—just 
sufficient to allow an arbitrary composition for 
the other original solution. If there were less than 
w — 1 boundaries, the two original solutions 
could not have had arbitrary compositions; if 
there were more than n—1 boundaries, the 
system would not be determinate. 

Two practical difficulties are encountered in 
calculation. One is the fact, just mentioned, that 
data from both original solutions must be used 
for each boundary. The second is that each con­
tinuity equation involves two phase variables, 
the relative conductances (<r° and <r9, for the 
boundary between phases a and 0), each of which 
is a function of all the concentrations in its phase 
(equations 14 and 15). Both of these difficulties 
are resolved by dealing with products of the form 
V^a", Va?ai, etc., as single variables. 

There are 2(« — 1) of these products in a sys­
tem of n — 1 boundaries, since for each boundary 
the displacements, V, may be multiplied by the 
relative conductance, a, of either adjoining phase. 
The first step in the solution is the calculation of 
the entire set of Va products from the known 
2(« — 1) independent transference numbers of 
ions in the two original solutions. In any phase, 
0 for example, the transference number of the j 
ion is related to the transference number of that 
ion in the a phase by the corresponding continuity 
equation (15), and to its transference number in 
the 7 phase by a second similar equation. If the 
transference number in the /3 phase is eliminated 
between these two equations, a relation is ob­
tained between transference numbers in the a and 
y phases 

( r , - W ) (r, - V3V3) Tf = 
(r, - F011V) (r, - VtI0I) Tj ( 1 8) 

Repetition of this elimination between successive 
phases leads to a relation between the transference 
numbers of any ion, j , in the two known end 
phases. If these end phases be denoted by a and 
jj, with any number of boundaries intervening, 
tius relation will be 

(r, - VOa") (rt - F 9 V ) • • • (rt - V* V ) Tf = 
(r, - Y*J) (r/ - V 5 V) • • • (ry - J* V ) T*. (19) 

It may be noted that on each side of the equation 
the superscripts of V run in consecutive alpha­
betical pairs, corresponding to the successive 
boundaries that are encountered between the a 
and ij phases. On the left side of the equation 
the superscripts of the a factor correspond to the 
left member of the pair on V, while on the right 
side of the equation the correspondence is with the 
right. If there are n ions in the system, there are 
n such equations. 

I t will be shown below that the two poly­
nomials, equation 20, each of which involves the 

known transference numbers of an end phase 
have the property that their roots, xi, Xi • • • and 
Vu ?!•••_> give the desired set of 2(w — 1) values 
for the different Va products. These polynomials, 
for the a and r\ phases, respectively, are 

1 - * U — X ' Tn-X 

n - y 

• (20) 

Let it be granted, for the moment, that each of 
these polynomials always has n — 1 distinct real 
roots. The set of n — 1 roots from the first poly­
nomial, Xi, xt, ' • • x„-i, with the additional rela­
tion that the sum of all transference numbers in a 
phase is unity (from equation 5), leads to a set of 
« linear equations'in the n transference numbers. 
For the first polynomial this set of equations is 

TT 
r\ - «i 

7? 
Ti - Xi 

+ ̂  + T2 - xi + Tn - Xi 

+ Xl 
+ ••• + 

* n 

Tn - X1 

Tf 
+ • 

7? 
+ • • • + • 

roc 
n 

= 0 

(21) 

terms of the coefficients. 

Tf = (22) 

T] is obtained from the second poly-

T1? (23) 

Ti - Xn-I Ti - Xn-I • • r„ — Xn 

Tf + T? + • • • + Tt - 1 

Such a set of equations can be solved by standard 
methods,8 to give values for the Tf variables in 

A typical solution is 
(r/ - Xi)JTj - X2) ••• (r,- - x»-i) 

(n - Ti)[Ti - Ti) ••• (Ti - Tn) 

in which there are n — 1 factors in both the nu­
merator and the denominator, the zero factor, Tj — 
tj, being absent in the denominator. 

By identical procedures, an equivalent expres­
sion for 
nomial 

(r,- - yi)(T/ - y,) • • • (TJ - y B - i ) 

(r,- - T1)(Tj - Ti) ••• (Tj - Tn) 

Finally, by elimination of the denominators, 
which are common to the two equations, there re­
sults the relation 
(Tj - yi)(rt - yt) • • • (Tj - yn-i)Tf = (r; - Xi)(T1 - « , ) • • • 

(Tj-Xn-I)TI (24) 

Comparison of this equation- with equation 19 
shows that the sets yi • • • yn-i and Xi • • • x„-x are 
actually the desired Va products.. It should be 
noted that the Va terms multiplying the a phase 
transference number, Tf in equation 19, are 
given by the roots of the polynomial from the y 
phase, and vice versa. 

It remains to be shown that all roots of the 
polynomial are real, as supposed, and that a rule 
can be given whereby the roots can be ordered to 
correspond with successive Va products. Since 

(8) Bdcher, "Introduction to Higher Algebra,1 

Co., New York, N. V., 1922. 
The Macmillari 
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the transference numbers are always positive, the 
polynomial 

z = _ i ! _ + J i - + . . . + - J i - (25) 
Ti — x r2 — x r„ — x 

will have the general form of Fig. 4, which is 
drawn for the special case of three anions (rela­
tive mobilities r\, rj, r»), and two cations (r4, r6). 
The functions must thus cross the x axis, i. e'., have 
a root, somewhere between each successive pair of 
relative mobility values. Between the least 
negative relative mobility and the least positive 
one, it must pass through the origin since one root 
is always zero to satisfy equations 5 and 6. 

Fig. 4.—The graphical form of the function given in 
equation 25, 

Now consider the continuity equations for any 
boundary, say the j3y boundary 

(r. _ i/tfV) Tf = (r, - V^ ^) Tj (15) 

Since the transference numbers are both positive, 
the factors in parentheses must have the same 
sign. In other words, both V^a^ and V^vy 

must have values such that they fall in the same 
interval between two successive relative mobili­
ties. If the designations of the system are such 
that V"8 has the most negative value, i. e., the 
a/3 boundary in Fig. 2, then Va8a8 will be more 
negative than V^a?, since Vafs < V^ and a? 
is always positive by equation 5. But V8~>a® 
and V^a"1 have just been shown to fall in the 
same interval between two consecutive relative 
mobilities, so that we have 

VW < F 3 V ' 1,20) 

From these considerations, we see that the roots 
of each polynomial, if ordered from the extreme 
negative to the most positive, will correspond to 
the appropriate set of Va products, similarly or­
dered. This order will, moreover, correspond 
to the actual order of boundaries in the system, 
from the one with the greatest negative velocity 
to the one with the most positive, /'. e., from left 
to right in Fig. 2. 

When one or more of the n ions in a system is 
absent from one original solution, the calculations 
are somewhat simplified but involve the same 
principles. In such a case the polynomial for the 
original solution in which an ion is missing is re­
duced in degree, by the absence of the correspond­

ing term, and the additional values required for 
Va products are obtained directly from the fact 
that the Va term must equal the relative mo­
bility of each ion missing, i. e., r, — Vv = 0. 
This follows from the necessity that an ion present 
in one original solution, but absent from the 
other, must disappear over a boundary in the sys­
tem. At this boundary a continuity equation, 
in the form of equation 15, will then have one 
transference number equal to zero and one not 
zero, so that the factor (77 — Va) for the second 
must vanish. The boundary over which the ion 
will disappear will be determined by the position 
of the ion in the ordered set of relative mobilities 
of all ions in the system. 

Corollaries.—It will be apparent from the 
foregoing analysis that a system that contains n 
ions will, in general, form n — 1 boundaries, 
whether or not any ions disappear over a bound­
ary. If the system contains p anions and q cat­
ions, there will generally be p — 1 boundaries with 
negative velocities, and q — 1 with positive veloci­
ties. 

A system containing n ions may, however, form 
less than » — 1 boundaries under special condi­
tions. If the Va products for a moving boundary 
are equal, e. g., V^a8 = V^at, the consequent 
equality of a functions of adjacent phases would, 
by equation 14, imply equal concentrations for 
each ion species in the two phases, so that no 
boundary would exist. Equality of correspond­
ing non-zero roots of the two polynomials (20), im­
plies, therefore, the disappearance of a boundary. 

A boundary cannot disappear by equality of the 
velocities of two adjacent boundaries. Such an 
event would imply either that an ion is absent 
from both original solutions (in which case it is 
absent from the entire system), or that two rela­
tive mobilities are identical (in which case the two 
ions would be classed as one species). 

The condition for disappearance of the sta­
tionary boundary is most easily given in terms of 
the regulating function. This function, origi­
nally defined by Kohlrausch4 under the more re­
strictive assumption of constant ion mobilities, 
may be redefined in terms of relative mobilities, 
the constancy of which has been found to be 
sufficient for the present analysis. Expressed in 
terms of relative mobilities, the regulating func­
tion, w, becomes 

u = h h • • • i (21 

Like a, this function is always positive and has 
the dimensions of concentration. If each mem­
ber of the set of equations, represented by equa­
tion 14, is divided through by the corresponding 
relative mobility, and the set then added, one 
obtains 

Vf>(u« - w8) = 0 (28) 

This result is obtained by the use of the electro-
neutrality condition (Ci) and the above definition 
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of w. In the case of a moving boundary (V"e 4= 
0), the regulating function must have the same 
value in the two adjoining phases. As a conse­
quence, this function must have the same value 
in every phase on one side of the stationary bound­
ary, regardless of the number of boundaries and 
phases, since the reasoning applies to all moving 
boundaries. 

The stationary boundary, on the other hand, 
must have unequal values of the regulating func­
tion in adjoining phases for its existence. If, in 
equation 14, the V term is set equal to zero, and 
the relative mobilities cancelled, one obtains 

form of equation 14, where V^a" = rg and VW 
= Th. Substitution of these values leads to 

' 'sfa - Ti) i 
(30) 

The next special case in order of difficulty oc­
curs when one ion, present in the known phase, is 
absent in the otherwise unknown phase. Let the 
known phase be a and the unknown, 0, with the g 
ion species absent in /3. Then V^a" = rg, and 
for other ions, j , equation 14 becomes 

Cf C? 
Cf = Cl 

^- = - = — (2S) 

as J>
 (29) 

(31) 

The last term, involving the regulating function 
ratio, can be justified by substituting the preced­
ing terms into equation 27. I t is thus seen that 
the stationary boundary is not only always a dilu­
tion boundary, but also that the dilution factor 
can be calculated from the values of the regulating 
function in each of the two original solutions. 
Since a more concentrated solution usually has the 
greater density, the original solution having the 
higher value for the regulating function should be 
placed below the other in a moving boundary 
experiment in order to avoid gravitational con­
vection at the stationary boundary. 

In contrast to the stationary boundary, a mov­
ing boundary cannot have any pair of ions main­
tain their relative proportions across it. Such an 
event would, by equation 14, imply either that 
their relative mobilities are equal (which is ex­
cluded by definition) or that no concentration 
changes occur for any ion species, since the rela­
tive conductance must change across any real 
boundary. For both moving and stationary ^ • 
boundaries, equation 14 also implies that there T1 • 
is either some change in concentration for rt • 
every ion species or no change in any concen- T1 • 
tration across the boundary. 

Equations Convenient for Calculation.—In the 
calculation of single boundaries in the system, an 
especially simple case arises when two ions dis­
appear across a boundary, for example Cl and 
BrO3 at the a/3 boundary in Fig. 1, since both the 
Va products required for this boundary are given 
by the relative mobilities of the disappearing ions. 
It is to be noted that, while only one ion species 
can disappear across a boundary in a given di­
rection (for the disappearance of two would, by 
equation 14, imply equality of their relative mo­
bilities), it is possible for one ion to disappear in 
one direction and the second ion in the other di­
rection. This occurs when an ion is absent from 
one original solution, and another ion which is 
next to it in the ordered sequence of relative mo­
bilities, is absent in the other original solution. 
If g and h are the ions that disappear under these 
circumstances, the concentrations of ions, j , in the 
two phases, say a and /3, are given by a special 

Finally, for the general case in which all ions are 
present, it is necessary to obtain both Va products 
from the polynomials of the known end phases. 
Equation 14 may, for moving boundaries, be 
used in the form 

Cf = 
( F 3 V ) ( V ^ " - n) 
(V«V)(F aV - n) 

C (32) 

Alternative means of calculating the system from 
the determined Va products are also available: 
the transference numbers may be first calculated 
with equation 15, or the displacements, V, may be 
evaluated as an initial step by use of the known 
values of a" and a" in the end phases. The regu­
lating function may be used to facilitate evalua­
tion of the stationary boundary. 

The polynomials used for calculating the Va 
products may be brought into a more useful form 
by expression in terms of concentrations, and 
elimination of any one concentration by use of the 
electroneutrality condition (*. e., elimination of 
the zero root). Equation 20 then becomes 

J» Cf + rJJZJ« cf + ••• + — 
x ft — x ' r„_i — x 

_*sC1 +
r-uzl2c? + • • • + r - ' " r" 

y ' r2 - y n ^ r„_i - y 

C-, =0 

CU = 0 
(33) 

In the most general case of an n ion system, in 
which every ion is present in each phase, it will be 
necessary to solve two polynomials of degree n — 2. 
For each absence of an ion from one original 
solution, the degree of that polynomial is reduced 
by 1. If only two ions are present in one original 
solution, there is no equation for that phase, since 
the set of Va products is given by the set of rela­
tive mobilities, with the zero root for the sta­
tionary boundary. 

Acknowledgment.—This analysis originated in 
discussions with Dr. L. G. Longsworth and 
throughout its development has been guided by 
his careful criticism. The author is also indebted 
to Dr. D. A. Maclnnes for his review of the man­
uscript. 

Summary 
A theory is developed to account for the forma­

tion of a system of moving boundaries when an 
electric current is passed across an initial sharp 
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junction between two salt solutions of arbitrary-
composition. The analysis is restricted to the 
class of strong electrolytes for which it may be 

Atoms such as boron and aluminum with fewer 
valence electrons than valence shell orbitals do not 
complete their valence shells by electron sharing 
of the usual type. While many compounds of 
such elements are metallic and others are salt­
like or ionic, still others consist of essentially non-
polar molecules. Such molecules can be termed 
electron deficient. In some cases the simple 
molecules predicted by conventional valence 
theory actually combine further. The most ex­
tensive series of this type is the subject of this 
paper. 

The compounds of hydrogen with boron have 
long been a puzzle in valence theory. In 1942 
Bauer1 summarized the most fully developed 
theory of that time, which assumed hydrocarbon­
like structures. Since too few electrons are pres­
ent for electron pair bonds, resonance is assumed 
among structures with one electron and no elec­
tron bonds in various positions. The net results 
with this point of view are unsatisfying. At many 
points the natural, expected result is not found 
and the theory must be strained to fit the facts. 
One may mention the infrared spectrum2 of 
B2H6, which is quite unlike that of C2H6, and the 
need of assuming a higher potential barrier to 
internal rotation2 in B2He, than in C2H6, in spite 
of larger distances and fewer electrons in the 
former. Other points will be noted below. How­
ever, possibly a more serious failure of the hydro­
carbon-like structural theory is its failure to give 
any adequate reasons for the existence of the 
particular hydroborons that are found, and for 
the absence of any others in the lower molecular 
weight range. For example, why should there 
be no molecule with three boron atoms? 

Very recently Nekrasov,8 Syrkin and Dyat-
kina4 and LonguetrHiggins and Bell6 have re­
vived and discussed the structure proposed earlier 
by Dilthey6 and by Core.7 This structure places 
two of the hydrogen atoms of B2H6 between the 
boron atoms, one above and one below the plane 

(1) S. H. Bauer, Chem. Rev., Sl, 43 (1942). 
(2) F. Stitt, J. Chem. Phys., 8, 981 (1940); and 9, 780 (1941). 
(3) B. V. Nekrasov, J. Gen. Chem. (U. R. S. S.), 10, 1021, 1156 

(1940). 
(4) Ya. K. Syrkin and M. E. Dyatkina, Acta Physicochim. 

(U. R. S. S.), 14, 547 (1941); Compl. rend. acad. sci. (U. S. R. S.), 
38, 180 (1942). 

(5) H. C. Longuet-Higgins and R. P. Bell, J. Chem. Soc, 250 
(1943). 

(6) W. Dilthey, Z. angew. Chem., 34, 596 (1921). 
(7) A. F. Core, Chemistry and Industry, «, 642 (1927). 

assumed that the relative mobilities of the ions 
are constant through the system. 
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of the rest of the molecule. Thus a small, four-
membered ring bond or bridge is formed. The 
evidence as presented by these authors3-4,e is 
most favorable to this point of view. Indeed the 
theory presented below develops in part from this 
structure and is entirely consistent with it. How­
ever, several additional elements are needed be­
fore all hydroboron chemistry is brought into a 
coherent picture. 

The first important addition is the recognition 
that this ring bond is not inconsistent with the 
essentials of the Wiberg8 structure, which so ably 
explained certain reactions of the hydroborons. 
The present picture is much more specific than 
Wiberg's, and differs from it in many ways. HeIl-
riegel9 proposed somewhat similar structures to 
those given below, but his postulate of K shell 
binding is totally different and is not acceptable. 
Let us now proceed with a logical exposition of the 
theory. 

The Protonated Double Bond.—The first ele­
ment of the theory is the new type of bond. It 
can form between electron pair bonded groups of 
the general formula RnMH where n + 1 is less 
than the number of valence shell orbitals of the 
atom M. Thus in (CHs)2BH or BH8 all atoms 
are bonded with electron pair bonds, but the 
boron atom has one vacant orbital, and there is at 
least one hydrogen atom bonded to boron. The 
formation of this bond uses one hydrogen atom 
and one vacant orbital in each group. 

As two such groups come together with a hy­
drogen of one group near the vacant orbital of 
the other, the following resonance can occur 

X ^ >\lX< r 
where we have taken boron with its valence shell 
of four orbitals as the example. Ionic forms are 
also possible. 

R > \ B < R N J / B<R n 
R /

 H / R R \ H R 

These forms will be particularly important if one 
central atom is more electronegative than the 

(8) E. Wiberg, Ber., 69B, 2816 (1936), and earlier papers there 
cited. See also B. Eistert, Z. physik Chem., B52, 202 (1942); and 
M. L. Huggins, J. Phys. Chem.,26, 833 (1922). 

(9) W. Hellriegel, Z. anorg. allgem. Chem., 188, 65 (1930). 
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